skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Hambleton, J. P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hambleton, J. P. (Ed.)
    Soil particles that have been deposited through water or air generally align their largest projected surface area normal to the depositional direction, which generates a cross-anisotropic fabric of granular soils. Researchers have used both two-dimensional (2D) and three-dimensional (3D) images to determine scalar fabric parameters of granular soils, including void ratio, coordination number, and average branch vector length. This study aims to evaluate the accuracy and effectiveness of 2D images to characterize fabric in 3D soils based on scalar parameters. The X-ray computed tomography (X-ray CT) is used to reconstruct the 3D volumetric images of three air-pluviated sand specimens, including crushed limestone, Griffin sand, and glass beads. Then, six slices are obtained by vertically cutting the 3D volumetric image in an angle increment of 30 degrees. The 3D and 2D images are analyzed to determine scalar fabric parameters. The results show that coordination numbers and average branch vector lengths computed from 2D images underestimate these values in 3D granular soils. The void ratios computed from 2D images vary a large range depending on slicing directions, which cannot provide reliable fabric characterizations for 3D granular soils. 
    more » « less
  2. Hambleton, J. P. (Ed.)
    Discrete element method (DEM) has been widely applied to simulate granular soil behavior. However, traditional DEM uses sphere clusters to approximate realistic particles, which is computationally demanding when simulating many particles. This study explores the use of physics engine, a platform developed for simulating physical processes in video games, to simulate realistic particles. This paper compares realistic particle simulation methodologies using physics engine and discrete element method, including contact models, parameter settings, computational speeds, and simulation results. The results show that the physics engine and DEM achieve similar simulation outputs, while the physics engine runs significantly faster than DEM, because PhysX uses both CPUs (central processing units) and GPUs (graphics processing units) of computers, triangular face tessellations to represent realistic particles, and a simplified contact model to accelerate simulations. This study provides geo-mechanicians and DEM modelers with one more option for them to consider when they simulate realistic particles. 
    more » « less